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Abstract. This paper shows in detail the application of a new stochastic approach for the characterization
of surface height profiles, which is based on the theory of Markov processes. With this analysis we achieve
a characterization of the scale dependent complexity of surface roughness by means of a Fokker-Planck
or Langevin equation, providing the complete stochastic information of multiscale joint probabilities. The
method is applied to several surfaces with different properties, for the purpose of showing the utility of
this method in more detail. In particular we show evidence of the Markov properties, and we estimate the
parameters of the Fokker-Planck equation by pure, parameter-free data analysis. The resulting Fokker-
Planck equations are verified by numerical reconstruction of the conditional probability density functions.
The results are compared with those from the analysis of multi-affine and extended multi-affine scaling
properties which is often used for surface topographies. The different surface structures analysed here show
in detail the advantages and disadvantages of these methods.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 02.50.Ga Markov processes –
68.35.Bs Surface structure and topography of clean surfaces

1 Introduction

Among the great variety of complex and disordered sys-
tems the complexity of surface roughness is attracting a
great deal of scientific interest [1–5]. The physical and
chemical properties of surfaces and interfaces are to a sig-
nificant degree determined by their topographic structure.
Thus a comprehensive characterization of their topogra-
phy is of vital interest from a scientific point of view as
well as for many applications [6–8].

Most popular methods used today for the character-
ization of surface roughness are based on the concepts
of self-affinity and multi-affinity, where the multifractal
f(α) spectrum has been regarded as the most complete
characterization of a surface [2,3,9,10]. One example of
a measure of roughness which is commonly used in this
context is the rms surface width wr(x) = 〈(h(x̃)− h̄)2〉1/2

r ,
where h(x̃) is the measured height at point x̃, 〈 · 〉r de-
notes the average over an interval of length r around the
selected point x, and h̄ the mean value of h(x̃) in that
interval. Thus the roughness is measured at a specific lo-
cation x and over a specific scale r. Then a scaling regime
of the ensemble average 〈wr〉 in r, if it exists, is analyzed
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according to 〈wα
r 〉 ∼ rξα , usually α ∈ Q. Here, 〈 · 〉 de-

notes the mean over the available range in x. For a more
thorough introduction into scaling concepts we refer the
reader to the literature, e.g. [2,3,9,10]. Terms concerning
scaling concepts which are used in this paper are rapidly
introduced in Section 4. Here, we have to note the follow-
ing points which concern stochastic aspects of roughness
analysis: First, the ensemble average 〈wr〉 must obey a
scaling law as mentioned above, and second, the statis-
tics of wr(x) are investigated over distinct length scales r,
thus possible correlations between wr(x) and wr′(x) on
different scales r, r′ are not examined.

In this paper we want to give a deeper introduction
into a new approach to surface roughness analysis which
has recently been introduced by us [11,12] and by [13].
This method is based on stochastic processes which should
grasp the scale dependency of surface roughness in a most
general way. No scaling feature is explicitly required, and
especially the correlations between different scales r and
r′ are investigated. To this end we present a systematic
procedure as to how the explicit form of a stochastic pro-
cess for the r-evolution of a roughness measure similar to
wr(x) can be extracted directly from the measured sur-
face topography. This stochastic approach turns out to be
a promising tool also for other systems with scale depen-
dent complexity such as turbulence [11,14,15], financial
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data [16,17], and cosmic background radiation [18]. Also
this stochastic approach has recently enabled the numer-
ical reconstruction of surface topographies [13].

Here we demonstrate our ansatz by analysing a num-
ber of data sets from different surfaces. The purpose is
to show extensively the utility of this method for a wide
class of rough surfaces. The examples show different kinds
of scaling properties which are, in addition, briefly anal-
ysed. Among these examples is a collection of road sur-
faces measured with a specially designed profile scanner.
Preliminary results of the analysis of one of these surfaces
have already been presented [12]. AFM measurement data
from an evaporated gold film have already been analysed
in an earlier stage of the method [11]. Since then, the
method has been significantly refined and extended. Mea-
surements of a steel crack surface were taken by confocal
laser scanning microscopy (CLSM) [5].

As a measure of surface roughness we use the height
increment [19]

hr(x) := h(x + r/2) − h(x − r/2) (1)

depending on the length scale r. For other scale depen-
dent roughness measures, see [3,10]. The height increment
hr is used because its moments, which are well-known
as structure functions (see Sect. 4), are closely connected
with spatial correlation functions. Nevertheless, it should
be pointed out that our method presented in the follow-
ing could be easily generalized to any scale dependent
measure, e.g. the above-mentioned wr(x) or wavelet func-
tions [20]. As a new ansatz, hr is regarded as a stochastic
variable in r. Without loss of generality we consider the
process as being directed from larger to smaller scales. The
focus of our method is the investigation of how the surface
roughness is linked between different length scales.

In the remainder of this paper we will first summarize
in Section 2 some central aspects of the theory of Markov
processes which form the basis of our analysis procedure.
Details concerning the measurement data are presented
in Section 3, their scaling properties are analyzed in Sec-
tion 4. The Markov properties of our examples are investi-
gated in Section 5. In Section 6 we estimate for each data
set the parameters of a Fokker-Planck equation. The abil-
ity of this equation to describe the statistics of hr in the
scale variable r is then examined in Section 7, followed by
concluding remarks in Section 8.

2 Surface roughness as a Markov process

Complete information about the stochastic process would
be available from the knowledge of all possible n-point, or
more precisely n-scale, joint probability density functions
(pdf) p(h1, r1; h2, r2; . . . ; hn, rn) describing the probabil-
ity of finding simultaneously the increments h1 on the
scale r1, h2 on the scale r2, and so forth up to hn on
the scale rn. Here we use the notation hi(x) = hri(x),
see equation (1). Without loss of generality we take r1 <
r2 < . . . < rn. As a first question one has to ask for a

suitable simplification. In any case the n-scale joint pdf
can be expressed by multiconditional pdf

p(h1, r1; . . . ; hn, rn) =
p(h1, r1|h2, r2; . . . ; hn, rn) · p(h2, r2|h3, r3; . . . ; hn, rn)

· . . . · p(hn−1, rn−1|hn, rn) · p(hn, rn) . (2)

Here, p(hi, ri|hj , rj) denotes a conditional probability of
finding the increment hi on the scale ri under the condi-
tion that simultaneously, i.e. at the same location x, on a
larger scale rj the value hj was found. It is defined with
the help of the joint probability p(hi, ri; hj, rj) by

p(hi, ri|hj , rj) =
p(hi, ri; hj , rj)

p(hj , rj)
. (3)

An important simplification arises if

p(hi, ri|hi+1, ri+1; . . . ; hn, rn) = p(hi, ri|hi+1, ri+1) . (4)

This property is the defining feature of a Markov process
evolving from ri+1 to ri. Thus for a Markov process the
n-scale joint pdf factorize into n conditional pdf

p(h1, r1; . . . ; hn, rn) = p(h1, r1 |h2, r2)
· . . . · p(hn−1, rn−1 |hn, rn) · p(hn, rn) . (5)

The Markov property implies that the r-dependence of
hr can be regarded as a stochastic process evolving in r,
driven by deterministic and random forces. Here it should
be noted that if condition (4) holds this is true for a pro-
cess evolving in r from large down to small scales as well
as the reverse from small to large scales [21]. Equation (5)
also emphasizes the fundamental meaning of conditional
probabilities for Markov processes since they determine
any n-scale joint pdf and thus the complete statistics of
the process.

For any Markov process a Kramers-Moyal expansion of
the governing master equation exists [22]. For our height
profiles it takes the form

−r
∂

∂r
p(hr, r|h0, r0) =

∞∑

k=1

(
− ∂

∂hr

)k

D(k)(hr, r) p(hr, r|h0, r0) . (6)

The minus sign on the left side of equation (6) expresses
the direction of the process from larger to smaller scales,
furthermore the factor r corresponds to a logarithmic vari-
able ρ = ln r which leads to simpler results in the case of
the scaling behaviour [23]. To derive the Kramers-Moyal
coefficients D(k)(hr, r), the limit ∆r → 0 of the condi-
tional moments has to be performed:

D(k)(hr, r) = lim
∆r→0

M (k)(hr, r, ∆r) , (7)

where

M (k)(hr, r, ∆r) =
r

k!∆r

∫ +∞

−∞
(h̃ − hr)k p(h̃, r − ∆r|hr , r) dh̃ . (8)
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The moments M (k)(hr, r, ∆r) characterize the alteration
of the conditional probability p(hr, r|h0, r0) over a finite
step size ∆r = r0−r and are thus also called “transitional
moments”.

A second major simplification is valid if the noise in-
cluded in the process is Gaussian distributed. In this case
the coefficient D(4) vanishes (from Eqs. (7) and (8) it
can be seen that D(4) is a measure of non-gaussianity of
the included noise). According to Pawula’s theorem, to-
gether with D(4) all the D(k) with k ≥ 3 disappear and
the Kramers-Moyal expansion (6) collapses to a Fokker-
Planck equation [22], also known as Kolmogorov equa-
tion [24]:

−r
∂

∂r
p(hr, r|h0, r0) =

{
− ∂

∂hr
D(1)(hr, r) +

∂2

∂h2
r

D(2)(hr, r)
}

p(hr, r|h0, r0).

(9)

The Fokker-Planck equation then describes the evolution
of the conditional probability density function from larger
to smaller length scales and thus also the complete n-scale
statistics. The term D(1)(hr, r) is commonly denoted as
the drift term, describing the deterministic part of the pro-
cess, while D(2)(hr, r) is designated as the diffusion term,
determined by the variance of a Gaussian, δ-correlated
noise (compare also Eqs. (7) and (8)).

By integrating over h0 it can be seen that the
Fokker-Planck equation (9) is also valid for the uncondi-
tional probabilities p(hr, r) (see also Sect. 7). Thus it cov-
ers also the behaviour of the moments 〈hn

r 〉 (also called
structure functions) including any possible scaling be-
haviour. An equation for the moments can be obtained by
additionally multiplying with hn

r and integrating over hr

−r
∂

∂r
〈hn

r 〉 =

n〈D(1)(hr, r)hn−1
r 〉 + n(n − 1)〈D(2)(hr, r)hn−2

r 〉 . (10)

For D(1) being purely linear in hr (D(1) = αhr) and D(2)

purely quadratic (D(2) = βh2
r), the multifractal scaling

〈hn
r 〉 ∼ rξn with ξn = nα+n(n−1)β is obtained from (10).

If in contrast D(2) is constant in hr, a monofractal scaling
where ξn are linear in n may occur, see [11].

Lastly, we want to point out that the Fokker-Planck
equation (9) corresponds to the following Langevin equa-
tion (we use Itô’s definition) [22]

−∂hr

∂r
= D(1)(hr, r)/r +

√
D(2)(hr, r)/r Γ (r) , (11)

where Γ (r) is a Gaussian distributed, δ-correlated noise.
The use of this Langevin model in the scale variable opens
the possibility to directly simulate surface profiles with
given stochastic properties, similar to [13].

With this brief summary of the features of stochastic
processes we have fixed the scheme from which we will
present our analysis of diverse rough surfaces. There are

three steps: First, the verification of the Markov property.
Second, the estimation of the drift and diffusion coeffi-
cients D(1) and D(2). Third, the verification of the es-
timated coefficients by a numerical solution of the corre-
sponding Fokker-Planck equation, thus reconstructing the
pdf which are compared to the empirical ones.

3 Measurement data

With the method outlined in Section 2 we analysed a col-
lection of road surfaces measured with a specially designed
profile scanner as well as two microscopic surfaces, namely
an evaporated gold film and a crack surface of a low-
alloyed steel sample, as already mentioned in Section 1.

The road surfaces have been measured with a specially
designed surface profile scanner. The longitudinal resolu-
tion was 1.04 mm, the profile length being typically 20 m
or 19 000 samples, respectively. Between ten and twenty
parallel profiles with a lateral distance of 10 mm were
taken for each surface, see Figure 1. The vertical error
was always smaller than 0.5 mm but in most cases ap-
proximately 0.1 mm. Details can be found in [25].

For the Au film data, the surface of four optical glass
plates had been coated with an Au layer of 60 nm thick-
ness by thermal evaporation [11]. The topography of these
films was measured by atomic force microscopy at different
resolutions, resulting in a set of images of 256×256 pixels
each, where every pixel specifies the surface height rela-
tive to a reference plane, see Figure 5. Out of these images
99 could be used for the analysis presented here, resulting
in about 6.5 × 106 data points. Sidelengths vary between
36 nm and 2.8 µm.

The sample of the crack measurements was a frac-
ture surface of a low-alloyed steel (german brand
10MnMoNi5-5). A detailed description of the measure-
ments can be found in [5]. Three CLSM (Confocal Laser
Scanning Microscopy) images of size 512 × 512 pixels in
different spatial resolutions were available, see Figure 9.
Pixel sizes are 0.49, 0.98, and 1.95 µm, resulting in image
widths of 251, 502, and 998 µm, respectively. Unavoidable
artefacts of the CLSM method were removed by simply
omitting for each image those data with the smallest and
largest height value, similar to [5]. Nevertheless this can-
not guarantee the detection of all the artefacts. The pos-
sible consequences are discussed together with the results.

For the analysis in the framework of the theory of
Markov processes, we will normalize the measurement
data by the quantity σ∞ defined by

σ2
∞ = lim

r→∞〈h2
r〉 . (12)

Thus it is possible to obtain dimensionless data with a
normalization independent of the scale r, in contrast to
e.g. σ2

r = 〈h2
r〉. As a consequence the results, especially

M (k)(hr, r, ∆r) and D(k)(hr, r) (cf. Sect. 2), will also be
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Fig. 1. Measurement data from selected road surfaces with
different kinds of scaling properties. Pavements are worn as-
phalt (Road 1), Y-shaped concrete stones (Road 2), pebbled
concrete stones (Road 3), and basalt stones (Road 4), from top
to bottom. For each surface a short section of the respective
height profile is shown.

dimensionless. From the definition it is easy to see that
σ∞ can be derived via σ2

∞ = 2σ2
x = 2〈(h(x)− h̄)2〉 if h(x)

becomes uncorrelated for large distances r.

4 Scaling analysis

In this paper a number of examples was selected from
all data sets under investigation. Because most popular
methods of surface analysis are based on scaling features
of some topographical measure, the examples were chosen
with respect to their different scaling properties as well
as their results from our analysis based on the theory of
Markov processes.

In the analysis presented here we use the well-known
height increment hr(x), which has been defined in equa-
tion (1), as a scale-dependent measure of the complexity
of rough surfaces [19]. Scaling properties are reflected by
the r-dependence of the so-called structure functions

Sn(r) = 〈|hn
r |〉 . (13)

If one then finds
Sn(r) ∼ rξn (14)

for a range of r, this regime is called the scaling range.
In that range the investigated profiles have self-affine
properties, i.e., they are statistically invariant under an
anisotropic scale transformation. If furthermore the de-
pendence of the exponents ξn on the order n is non-
linear, one speaks of multi-affine scaling. Those proper-
ties are no longer identified by a single scaling exponent,
but an infinite set of exponents. A detailed explanation
of self- and multi-affine concepts is beyond the scope of
this article. Instead, we would like to refer the reader
to the literature [2,3,9,10]. The power spectrum, which
often is used to determine scaling properties, can easily
be derived from the second order structure function. It
is defined as the Fourier transform of the autocorrelation
function R(r), which itself is closely related to S2(r) by
R(r) = 〈h(x)2〉 − S2(r)/2, by comparing equations (1)
and (13).

In addition to the r-dependence of the structure func-
tions, a generalized form of scaling behaviour can be deter-
mined analogously to the Extended Self Similarity (ESS)
method which is popular in turbulence research [26].
When the Sn(r) are plotted against a structure function
of specific order, say S3(r), in many cases an extended
scaling regime is found according to

Sn(r) ∼ (
S3(r)

)ζn
. (15)

Clearly, meaningful results are restricted to the regime
where S3 is monotonous. It is easy to see that now the ξn

can be obtained by

ξn = ζn · ξ3 , (16)

cf. reference [26]. While for turbulence it is widely ac-
cepted that by this means experimental deficiencies can
be compensated to some degree, for surface roughness the
meaning of ESS lies merely in a generalized form of scaling
properties.

It should be noted that the results of any scaling anal-
ysis may be influenced by the method of measurement,
by the definition of the roughness measure, here hr(x)
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(or wr(x) as mentioned in Sect. 1), as well as by the al-
gorithms used for the analysis [5,27]. Nevertheless, this
problem is not addressed here as the main focus of our
investigations is the application of the theory of Markov
processes to experimental data.

4.1 Surfaces with scaling properties

In Figure 1 we present road surface data with different
kinds of scaling properties. For each data set a short pro-
file section is shown. Structure functions of order one to six
on double logarithmic scale are presented in Figure 2. Fol-
lowing the arguments in [14], higher order structure func-
tions cannot be evaluated with sufficient precision from
the given amount of data points. The worn asphalt pave-
ment (Road 1) is an example of a comparably large scaling
regime over more than one order of magnitude in r. A sur-
face with similar features, namely a cobblestone road, has
already been presented in [12]. Two separate scaling re-
gions are found for a Y-shaped concrete stone pavement
(Road 2). Additionally a sharp notch can be seen in the
structure functions at r = 0.2 m, indicating a strong peri-
odicity of the pavement caused by the length of the indi-
vidual stones. The third example, a “pebbled concrete”
pavement (Road 3), consists of concrete stones with a
top layer of washed pebbles. This material is also known
as “exposed aggregate concrete”. Here, the scaling region
of the structure functions is only small. For the basalt
stone pavement (Road 4), being the fourth example, scal-
ing properties are poor. We have nevertheless marked a
possible scaling range and derived the respective scaling
exponents for comparison with the other examples. Simi-
lar to the Y-shaped concrete stones, a periodicity can be
found at about 0.1 m length scale.

The results for the generalized scaling behaviour ac-
cording to equation (15) are shown in Figure 3. It can
be seen that indeed for three of the surfaces in Figure 1
an improved scaling behaviour is found by this method.
Only for Road 4 do the generalized scaling properties re-
main weak. In Figure 4 the scaling exponents ξn of the
structure functions within the marked scaling regimes in
Figure 2 were determined and plotted against the order n
as open symbols. Additionally, values of ξn were derived
according to equations (15) and (16) and added as crosses.
For Road 2 two sets of exponents correspond to the two
distinct scaling regimes in Figure 2. Even though there is
only one set of ζn found in Figure 3, two sets of ξn are
obtained due to the two different ξ3, see equations (14)
and (16).

All surfaces from Figure 1 show a more or less non-
linear dependence of the ξn on n, indicating multi-affine
scaling properties. The scaling exponents obtained via the
generalized scaling according to equation (15) are in good
correspondence with the ξn achieved by the application
of equation (14). Deviations are seen for Road 2 and at
higher orders for Road 3, possibly caused by inaccuracies
in the fitting procedure. For Road 4 no generalized scaling
is observed (compare Fig. 3) and thus values of ξn cannot
be derived from ζn. From this we conclude that scaling
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Fig. 2. Structure functions Sn(r) of selected road surfaces (see
Fig. 1) with different kinds of scaling properties on a log-log
scale (see text). Symbols correspond to orders n; diamonds
(n = 1), triangles (n = 2), circles (n = 3), squares (n = 4),
× signs (n = 5), and plus signs (n = 6).

properties for some cases are questionable as a comprehen-
sive tool to characterize the complexity of a rough surface.

An example for good scaling properties is the gold
film surface (Au). To increase statistical accuracy, incre-
ments are evaluated here in the direction of the rows
of the images as well as the columns. In Figure 5
two of the 99 images under investigation are shown.
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Fig. 3. Generalized scaling analysis of the surfaces shown in
Figure 1. Structure functions Sn are displayed versus S3 on a
log-log scale. Symbols correspond to orders n as in Figure 2.

Figure 6 presents the structure functions Sn(r), de-
rived from all images. The surface is randomly covered
with granules which show no typical diameter. A scal-
ing regime of more than one order of magnitude in r
is found for the structure functions Sn(r) in Figure 6.
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Fig. 4. Scaling exponents ξn of the surfaces shown in Figure 1
achieved via equation (14) (open symbols) and those obtained
via ζn from equation (16) (crosses). For Road 2 two sets of
exponents were obtained from the two scaling regimes found
for Sn(r) in Figure 2.

Generalized scaling behaviour is clearly present as shown
in Figure 7a. The scaling exponents ξn presented in
part (b) of the same figure are nearly linear in n,
thus this surface can not be regarded as multi-affine,
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50 nm 0.5 µm

Fig. 5. AFM images of the Au film surface. Sidelengths are
110 nm and 1.1 µm. The relative surface height is represented
as gray level. Maximum heights are 7.2 nm and 13.3 nm, re-
spectively.
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Fig. 6. Structure functions Sn(r) of the Au film surface on a
log-log scale. Symbols correspond to orders n as in Figure 2.

but appears to be self-affine. Here, the ξn achieved
via equation (16) match perfectly those obtained
from equation (15).

4.2 Surfaces without scaling properties

To complete the set of examples, we present two surfaces
without scaling properties. The first one is a smooth as-
phalt road (Road 5), shown in Figure 8. No power law can
be detected for the Sn(r) but a generalized scaling is ob-
served in Figure 11a. The range of values of S3, however,
is relatively small.

The second example lacking a scaling regime is the
steel fracture surface (Crack). One of the three CLSM im-
ages under investigation is shown in Figure 9a. Figure 9b
presents an additional REM image at a higher resolution,
which gives an impression of the surface morphology. For
the structure functions in Figure 10 no scaling properties
are found, and the dependences of Sn(r) on S3(r) in Fig-
ure 11b also deviate from proper power laws. It should
be noted that in general scaling properties not only de-
pend on the respective data set but also on the analysis
procedure. Using other measures than hr(x), in [5] scaling
regimes of those measures have been found, and scaling
exponents could be obtained.
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Fig. 7. Generalized scaling properties (a) and scaling expo-
nents (b) of the Au film surface shown in Figure 5. Scaling
exponents ξn achieved via equation (15) are marked by open
symbols, those obtained via ζn from equation (16) by crosses.
Compare also with Figure 3.
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Fig. 8. Measurement data (a) and structure functions (b) from
a road surface without scaling properties (Road 5). The pave-
ment is smooth asphalt. See also Figures 1 and 2.
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(a)
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(b)

100 µm

Fig. 9. Measurement data from a steel crack surface (Crack).
(a) CLSM image, side length 502 µm, (b) REM image, side
length 140 µm.
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Fig. 10. Structure functions Sn(r) of the CLSM images from
a steel crack surface (Crack) on a log-log scale. The symbols
correspond to orders n as in Figure 2.

4.3 Conclusions on scaling analysis

To conclude the scaling analysis of our examples, we have
chosen surfaces with a range of different scaling properties
from good scaling over comparably wide ranges, such as
for Road 1 and Au, to the absence of scaling, such as
for Road 5 and Crack. The generalized scaling analysis,
analogous to ESS [26], leads to the same scaling exponents
as the dependence of the structure functions Sn(r) on the
scale r, with some minor deviations.

5 Markov properties

As outlined in Sections 1 and 2, we want to describe the
evolution of the height increments hr(x) in the scale vari-
able r as realizations of a Markov process with the help
of a Fokker-Planck equation. Consequently, the first step
in the analysis procedure has to be the verification of the
Markov properties of hr(x) as a stochastic variable in r.

For a Markov process the defining feature is that the n-
scale conditional probability distributions are equal to the
single conditional probabilities, according to equation (4).
With the given amount of data points the verification of
this condition is only possible for three different scales.
Additionally the scales r are limited by the available pro-
file length. For the sake of simplicity we will always take
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Fig. 11. Generalized scaling properties of the surfaces shown
in Figures 8 (Road 5 (a)) and 9 (Crack (b)). Compare also with
Figures 3 and 7.

r3 − r2 = r2 − r1 = ∆r. Thus we can test the validity of
equation (4) in the form

p(h1, r1|h2, r1 + ∆r) =
p(h1, r1|h2, r1 + ∆r; h3 = 0, r1 + 2∆r) . (17)

Note that in equation (17) we take h3 = 0 to restrict the
number of free parameters in the pdf with double condi-
tions.

Three procedures were applied to find out if Markov
properties exist for our data. From the results of all three
tests we will find a minimal length scale lM for which
this is the case. The meaning of this so-called Markov
length will be discussed below. In the following we will
demonstrate the methods using the example of the Au
surface.

5.1 Testing procedures

The most straightforward way to verify equation (17) is
the visual comparison of both sides, i.e., the pdf with sin-
gle and double conditions. This is illustrated in Figure 12
for two different scale separations ∆r = 17 nm and 35 nm.
In each case a contour plot of single and double conditional
probabilities p(h1, r1|h2, r2) and p(h1, r1|h2, r2; h3=0, r3)
is presented in the top panel of (a) and (b), respec-
tively. Below two one-dimensional cuts at fixed values of
h2 ≈ ±σ∞ are shown, representing directly p(h1, r1|h2=
±σ∞, r2; h3=0, r3). It can be seen that in panel (a), for
the smaller value of ∆r, the single and double condi-
tional probability are different. This becomes clear from
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Fig. 12. Test for Markov properties of Au film data for two
different scale separations ∆r = 14 nm (a) and 35 nm (b),
where ∆r = r3 − r2 = r2 − r1 (see text). In both cases r2 =
169 nm. In each case a contour plot of conditional probabili-
ties p(h1, r1|h2, r2) (dashed lines) and p(h1, r1|h2, r2; h3=0, r3)
(solid lines) is shown in the top panel. Contour levels differ
by a factor of 10, with an additional level at p = 0.3. Be-
low the top panels in each case, two one-dimensional cuts at
h2 ≈ ±σ∞ are shown with p(h1, r1|h2, r2) as dashed lines and
p(h1, r1|h2, r2; h3=0, r3) as circles.

the crossing solid and broken contour lines of the contour
plot as well as from the differing lines and symbols of the
one-dimensional plots below. Panel (b), for ∆r = 35 nm,
shows good correspondence of both conditional pdf. We
take this finding as a strong hint that for this scale separa-
tion ∆r equation (4) is valid and Markov properties exist.
Following this procedure for all accessible values of ∆r,
the presence of Markov properties was examined. For this

surface Markov properties were found for scale distances
from (25 ± 5) nm upwards.

The validity of equation (17) can also be be quantified
mathematically using statistical tests. An approach via
the well-known χ2 measure has been presented in [28],
whereas in [14] the Wilcoxon test has been used. Next, we
give a brief introduction to this procedure, which will be
used here, too. More detailed discussions of this test can
be found in [14,21,29]. For this procedure, we introduce
the notation of two stochastic variables xi, i = 1, . . . , n
and yj , j = 1, . . . , m which represent the two samples from
which both conditional pdf of equation (4) are estimated,
i.e.

x(hr2 , r1, r2) = hr1 |hr2

y(hr2 , hr3 , r1, r2, r3) = hr1 |hr2 ;hr3
. (18)

Here ·|hx denotes the conditioning. All events of both sam-
ples are sorted together in ascending order into one se-
quence, according to their value. Now the total number of
so called inversions is counted, where the number of in-
versions for a single event yj is just the number of events
of the other sample which have a smaller value xi < yj .
If equation (17) holds and n, m ≥ 25, the total number of
inversions Q is Gaussian distributed with

〈Q〉 = nm/2 and

σQ =
√

nm(n + m + 1)/12 . (19)

We normalize Q with respect to its standard deviation
and consider the absolute value

t = |Q − 〈Q〉|/σQ . (20)

For its expectation value it is easy to show that 〈t〉 =√
2/π (still provided that (17) is valid), where here the

average 〈·〉 is performed over h2. If a larger value of 〈t〉 is
measured for a specific combination of r and ∆r, we con-
clude that equation (17) is not fulfilled and thus Markov
properties do not exist. A practical problem with the
Wilcoxon test is that all events xi, yj have to be statis-
tically independent. This means that the intervals of sub-
sequent height increments hr have to be separated by the
largest scale involved. Thus the number of available data
is dramatically reduced.

In Figure 13 we present for the Au surface measured
values of 〈t(r, ∆r)〉 at a scale r = 28 nm. The Markov
length lM is marked where 〈t(r, ∆r)〉 has approached its
theoretical value

√
2/π.

Another method to show the validity of condition (17)
is the investigation of the well-known necessary condition
for a Markovian process, the validity of the Chapman-
Kolmogorov equation [22]

p(h1, r1|h3, r3) =
∫ +∞

−∞
p(h1, r1|h2, r2)p(h2, r2|h3, r3)dh2.

(21)
We use this equation as a method to investigate the
Markov properties of our data. This procedure was used
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Fig. 13. Wilcoxon test for the Au surface. The scale r is 28 nm.
The theoretically expected value 〈t〉 =
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a horizontal line, the Markov length lM = (25 ± 5) nm with a
vertical line.

for example in [13,30–32] for the verification of Markov
properties. It also served to show for the first time the
existence of a Markov length in [28]. The conditional
probabilities in equation (21) are directly estimated from
the measured profiles. In Figure 14 both sides of the
Chapman-Kolmogorov equation are compared for two dif-
ferent values of ∆r. In an analogous way to Figure 12, for
each ∆r the two conditional probabilities are presented
together in a contour plot as well as in two cuts at fixed
values of h2. While for the smaller value ∆r = 14 nm
both the contour lines and the cuts at fixed h2 clearly
differ, we find a good correspondence for the larger value
∆r = 35 nm.

A third method which we did not use here but which
is reported in the literature is based on the description of
the stochastic process by a Langevin equation. With this
knowledge of the Langevin equation (11) the noise can
be reconstructed and analyzed with respect to its correla-
tion [33,34].

5.2 Conclusions on Markov properties

The results of the methods described above were combined
to determine whether Markov properties of the height in-
crement hr(x) in the scale variable are present for our
surface measurements. We found Markov properties for
all the selected examples of surface measurement data.

It is also common to all examples that these Markov
properties are not universal for all scale separations ∆r
but there exists a lower threshold which we call the
Markov length lM . It was determined in each case by sys-
tematic application of the three testing procedures for all
accessible length scales r and scale separations ∆r. The re-
sulting values are listed in Table 1. The presence of Markov
properties only for values of ∆r above a certain threshold
has also been found for stochastic data generated by a
large variety of processes and especially occurs in turbu-
lent velocities [11,14,18,28,35].

The meaning of this Markov length lM may be seen in
comparison with a mean free path length of a Brownian
motion. Only above this mean free path is a stochastic
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Fig. 14. A check of the Chapman-Kolmogorov equation (21)
for the Au surface for two different scale separations ∆r =
14nm (a) and 35 nm (b). In both cases r2 = 169 nm. The
plots are organized in the same way as Figure 12. The pdf
representing the left side of (21) are shown with solid lines,
the integrated pdf of the right side of (21) as dashed lines and
circles.

Table 1. Markov lengths lM for all the surfaces presented.

Surface lM Surface lM Surface lM
Road 1 33mm Road 2 10 mm Road 3 4.2 mm
Road 4 17mm Road 5 4.2 mm Au 25 nm
Crack 20 µm

process description valid. For smaller scales there must be
some coherence which prohibits a description of the struc-
ture by a Markov process. If for example the description
of a surface structure requires a second order derivative
in space, a Langevin equation description (11) becomes
impossible. In this case a higher dimensional Langevin
equation (at least two variables) is needed. It may be



M. Waechter et al.: Stochastic analysis of different rough surfaces 269

interesting to note that the Markov length we found for
the Au surface of about 30 nm coincides quite well with
the size of the largest grain structures we see in Figure 5.
Thus the Au surface may be thought of as a composition of
grains (coherent structures) by a stochastic Markov pro-
cess.

In the case of Road 2 with its strong periodicity at
0.2 m the Markov properties end slightly above this length
scale. It seems evident that here the Markov property is
destroyed by the periodicity. While some of the other sur-
faces also have periodicities, these are never as sharp as
for Road 2. An upper limit for Markov properties could
not be found for any of the other surfaces.

Another interesting finding can be seen from Figures 2,
6, 8, and 10. There is no connection between the scal-
ing range and the range where Markov properties hold.
Regimes of scaling and Markov properties are found to be
distinct, overlapping or covering, depending on the sur-
face. Data sets which fulfill the Markov property do not
in all cases show a scaling regime at all. Also, on the other
hand, scaling features seem not to imply Markov proper-
ties, which has been indicated previously for some numer-
ically generated data in [11]. While there is always an up-
per limit of the scaling regime, we found only one surface
for which the Markov properties possess an upper limit.

6 Estimation of drift and diffusion coefficients

As a next step we want to concentrate on extract-
ing the concrete form of the stochastic process, if the
Markov properties are fulfilled. As mentioned in Sec-
tion 2 our analysis is based on the estimation of
Kramers-Moyal coefficients. The procedure we use to ob-
tain the drift (D(1)) and diffusion coefficient (D(2)) for
the Fokker-Planck equation (9) was already outlined by
Kolmogorov [24], see also [14,22]. First, the conditional
moments M (k)(hr, r, ∆r) for finite step sizes ∆r are esti-
mated from the data via the moments of the conditional
probabilities. This is done by application of the definition
in equation (8), which is recalled here:

M (k)(hr, r, ∆r)=
r

k!∆r

∫ +∞

−∞
(h̃−hr)k p(h̃, r−∆r|hr , r) dh̃.

(22)
The conditional probabilities in the integral are obtained
by counting events in the measurement data as shown al-
ready in Section 5. Here, one fundamental difficulty of the
method arises: For reliable estimates of conditional prob-
abilities we need a sufficient number of events even for
rare combinations of h̃, hr. Consequently, a large amount
of data points is needed. This problem becomes even more
important if one takes into account that a large range in
r should be considered. The number of statistically inde-
pendent intervals hr is limited by the length of the given
data set and decreases with increasing r.

In a second step, the coefficients D(k)(hr, r) are ob-
tained from the limit of M (k)(hr, r, ∆r) when ∆r ap-
proaches zero (see definition in Eq. (7)). For fixed val-
ues of r and hr a straight line is fitted to the sequence of

Table 2. Extrapolation ranges for all the presented surfaces.
Listed are the smallest (lM ) and largest (lmax ) values of ∆r
used for extrapolation of the D(k)(hr, r).

Surface lM lmax Surface lM lmax

Road 1 33 mm 67mm Road 2 10mm 21 mm
Road 3 4.2 mm 19mm Road 4 17mm 25 mm
Road 5 4.2 mm 8.3 mm Au 25 nm 84nm
Crack 20 µm 44 µm

M (k)(hr, r, ∆r) depending on ∆r and extrapolated against
∆r = 0. The linear dependence corresponds to the lowest
order term when the ∆r-dependence of M (k)(hr, r, ∆r) is
expanded into a Taylor series for a given Fokker-Planck
equation [33,36]. Our interpretation is that this way of es-
timating the D(k) is the most advanced one, and also per-
forms better than first parameterizing the Mk and then
estimating the limit ∆r → 0 for this parameterization, as
previously suggested in [14,21].

There have been suggestions to fit functions to
M (k) other than a straight line, especially for the estima-
tion of D(2), see [21]. Furthermore it has been proposed to
use particular terms of the above-mentioned expansion to
directly estimate D(k)(hr, r) without extrapolation [32].
On the other hand, in [37] it becomes clear that there can
be manifold dependences of M (k) on ∆r which in gen-
eral are not known for a measured data set. Consequently,
one may state that there is still a demand to improve
the estimation of D(k). At the present time we suggest to
show the quality of the estimated D(k) by verification of
the resulting Fokker-Planck equation, once its drift and
diffusion coefficients have been estimated. However, for
our data neither nonlinear fitting functions nor correction
terms applied to the M (k) resulted in improvements of the
estimated D(k).

A crucial point in our estimation procedure is the range
of ∆r where the fit can be performed. Only those ∆r
can be used where Markov properties were found in the
scale domain. In Section 5 we showed that for our data
Markov properties are given for ∆r larger than the Markov
length lM (see Tab. 1). In order to reduce uncertainty, a
large range of ∆r as the basis of the extrapolation is de-
sirable. From equation (22) it can be seen, however, that
∆r must be smaller than r. As a compromise between
accuracy and extending the scale r to smaller values, in
many cases an extrapolation range of lM ≤ ∆r ≤ 2 lM was
used (cf. Tab. 2). This procedure is shown in Figure 15 for
Road 1.

6.1 Estimation results

Following the procedure outlined above, D(1)(hr, r) and
D(2)(hr, r) were derived for the measurement data pre-
sented in Section 3, with the exception of Road 5 (see
below). For the road surfaces, estimations were performed
for length scales r separated by ten measurement steps
or 10.4 mm, respectively, to reach a sufficient density over
the range where the coefficients were accessible. Figures 16
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Fig. 15. Extrapolation procedure for D(1) (a) and D(2) (b),
illustrated for surface Road 1. Length scale r is 108 mm,
hr is −σ∞. Values of M (1) and M (2) inside the range marked
by broken lines were used for the extrapolation. The results
D(1)(hr, r) and D(2)(hr, r) are marked with filled circles on
the vertical axis.

and 17 show estimations of the drift coefficients D(1) and
the diffusion coefficients D(2) for the road surfaces, each
performed for one fixed length scale r. The error bars are
estimated from the errors of M (k)(hr, r, ∆r) via the num-
ber of statistically independent events contributing to each
value, assuming that each bin of p(h1, r1|h0, r0) containing
N events has an intrinsic uncertainty of ±√

N . Addition-
ally, values of D(4) are added to the plots of D(2) which
have been estimated in the same way. Thus it can be seen
that in all cases D(4) is small compared to D(2), except for
Road 4, and in most cases its statistical errors are larger
than the values themselves. Negative values are not shown
because the vertical axes start at zero. As M (4) is posi-
tive by definition, the occurence of negative values of D(4)

results from the limit ∆r → 0 and should be only due to
the statistical errors involved. Even if there is no evidence
that D(4) is identically zero, the presented values give a
hint that its influence in the Kramers-Moyal expansion (6)
is rather small and the assumption of a Fokker-Planck
equation (9) is justifiable, with the possible exception of
Road 4.

Estimated drift and diffusion coefficients D(1) and D(2)

for the Au surface are shown in Figure 18 for r = 169 nm.
Again, D(4) was added to the plot of D(2), in this case
without error bars to enhance clarity. Errors of D(4) are
in this case always much larger than the values themselves
and would cover the values of D(2) as well as their er-
rors. Also the error bars of D(2) appear to be quite large
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Fig. 16. Estimated drift coefficients D(1)(hr, r) of the Fokker-
Planck equation for the road surfaces shown in Figure 1.
Scales r are 108 mm (Road 1), 114 mm (Road 2), 94 mm
(Road 3), and 104 mm (Road 4). Parameterizations are shown
as lines.

for the Au surface. The data here are measured as two-
dimensional images, thus the number of statistically inde-
pendent hr(x) decreases quadratically with increasing r,
resulting in rather large error estimates. For the calcula-
tion of D(k) nevertheless all accessible hr(x) were used.
As the regime of Markov properties starts at ∆r = 25 nm,
the range 25 nm ≤ ∆r ≤ 84 nm was used as basis for
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Fig. 17. Estimated diffusion coefficients D(2)(hr, r) (circles)
of the Fokker-Planck equation for road surfaces shown in
Figure 1. Additionally the fourth Kramers-Moyal coefficients
D(4)(hr, r) are shown as squares. Scales r are as in Figure 16.
Parameterizations are shown as lines.

the extrapolation (see Tab. 2). For r < 84 nm the upper
limit was reduced in order to derive the coefficients also
for smaller scales r (compare also Sect. 6). In this way
the drift and diffusion coefficients of the Au film could be
worked out from 281 down to 56 nm.

In the same way as for the other surfaces, estimations
of the Kramers-Moyal coefficients were performed for the
steel crack. The results are shown in Figure 19. Again,
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Fig. 18. Estimated drift (a) and diffusion (b) coefficient of
the Au surface for r = 169 nm. Estimates of D(4) are added as
squares in (b).
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Fig. 19. Estimated Kramers-Moyal coefficients for surface
Crack for a length scale r = 49 µm. (a) D(1)(hr, r), (b)
D(2)(hr, r) and D(4)(hr, r).
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Fig. 20. Uncorrelated noise in the case of surface Road 5. De-
pendence of (a) M (1)(hr, r,∆r) and (b) M (2)(hr, r, ∆r) on ∆r
for r = 104 mm and hr = −0.6σ∞. The Markov length lM is
marked with a dashed line. For illustration a function propor-
tional to 1/∆r is fitted to the M (k).

the estimates for D(4) are also presented, which are of the
same order of magnitude as D(2) for higher values of hr

(|hr| > 0.5σ∞).
For the surface Road 5 (cf. Fig. 8) drift and diffusion

coefficients could not be estimated. The reason can be
seen in Figure 20. The diagram shows the dependence
of M (1)(hr, r, ∆r) and M (2)(hr, r, ∆r) on ∆r for fixed r
and hr, in this case 104 mm and −0.6σ∞. For ∆r > lM it
can be seen that M (1) and M (2) behave like 1/∆r. This
behaviour can be explained by the presence of some ad-
ditional uncorrelated noise, where additional means inde-
pendent of the stochastic process. A similar behaviour was
found for financial market data [38]. In this case the inte-
gral in equation (22) will tend to a constant for small ∆r,
independent of the value of ∆r. Because we divide the in-
tegral by ∆r, the M (k) will then diverge as ∆r approaches
zero. Note that within the same mathematical framework
the presence of uncorrelated noise can be quantitatively
determined [33].

6.2 Conclusions on the estimation of drift
and diffusion coefficients

Estimations of the drift and diffusion coefficients
D(1)(hr, r) and D(2)(hr, r) have been performed for all the
surfaces introduced in Section 3. An exception is Road 5,
where the stochastic process in the scale variable, while
still Markovian, appears to be dominated by additional

uncorrelated noise. From equations (7) and (8) it can be
seen that this leads to diverging Kramers-Moyal coeffi-
cients D(k), as is the case for Road 5.

As mentioned above, the magnitude of the fourth
Kramers-Moyal coefficient D(4) is of particular impor-
tance. If D(4) can be taken as zero, the whole scale de-
pendent complexity can be described by a Fokker-Planck
equation. Otherwise, if D(4) is not zero, an infinite set of
D(k) is necessary. In terms of a Langevin equation (11),
for D(4) 
= 0 no Gaussian noise is present. This case is
related to unsteady stochastic processes [39]. As we see
from the topographies in Figures 1 and 9, jumps are more
likely to be present for the Road 4 and Crack surfaces
than for the remaining ones. This impression is consistent
with the result that here we find D(4) 
= 0. As a conse-
quence, in these cases the Fokker-Planck equation with a
drift and diffusion coefficient is not sufficient to describe
the stochastic process in the scale variable, because the
higher coefficients cannot be neglected. The reconstruc-
tion of conditional probabilities (cf. Sect. 7) failed for these
surfaces.

The range of scales where the drift and diffusion coeffi-
cients could be estimated varies for the different surfaces,
depending on the Markov length on one side and on the
length of the measured profiles on the other side. In the
case of Road 2 an additional upper limit for the Markov
properties was caused by the influence of a strong period-
icity of the pavement.

7 Verification of the estimated Fokker-Planck
equations

In the previous section methods to estimate the Kramers-
Moyal coefficients were discussed. We found that this esti-
mation is not trivial. To prove the quality of the estimated
D(k) we now want to verify the corresponding Fokker-
Planck equations.

7.1 Parameterization of drift and diffusion coefficients

With the estimations of the drift and diffusion coefficient
from Section 6 for each surface a Fokker-Planck equa-
tion (9) is defined which should describe the corresponding
process. For the verification of these coefficients it is ad-
ditionally desirable to generate parameterizations which
define D(1)(hr, r) and D(2)(hr, r) not only at discrete val-
ues but at arbitrary points in the (hr, r)-plane.

Such parameterizations have already been shown in
Figures 16, 17, 18, and 19, as lines together with the esti-
mated discrete values. For D(1) it can be seen that for all
surfaces a straight line with negative slope was used, with
additional cubic terms for Road 2, Road 4, and Crack.
The diffusion coefficients were in all cases parameterized
as parabolic functions. The special shape of the diffusion
coefficient for Road 2 was parameterized as one inner and
one outer parabola for small and larger values of hr, re-
spectively (compare with Fig. 17). We would like to note
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that both the drift and diffusion coefficients of the cobble-
stone road presented in [12] are best fitted by piecewise
linear functions with steeper slopes for larger hr.

It is easy to verify that with a linear D(1) and a con-
stant D(2) the Fokker-Planck equation (9) describes a
Gaussian process, while with a parabolic D(2) the distri-
butions become non-Gaussian, also called intermittent or
heavy tailed. For the Au surface it can be seen in Fig-
ure 18 that D(2) has only a weak quadratic dependence
on hr and possibly could also be interpreted as constant
(we nevertheless kept the small quadratic term because it
is confirmed by the verification procedure below). If D(2)

is constant in hr the type of noise in the corresponding
Langevin equation (11) is no longer multiplicative but ad-
ditive, which results in Gaussian noise in the process. Thus
the statistics of hr in r will always stay Gaussian, and all
moments 〈hn

r 〉 with n > 2 can be expressed by the first
and second one. As a further consequence, the scaling ex-
ponents ξn (see Sect. 4) are obtained by 〈hn

r 〉 ∼ 〈h2
r〉n/2

as ξn = n
2 ξ2. This linear dependence on n denotes self-

affinity rather than multi-affinity and is confirmed by the
scaling analysis in Section 4.1.

7.2 Reconstruction of empirical pdf

Next, we want to actually evaluate the precision of our re-
sults. Therefore we return to equation (9). Knowing D(1)

and D(2) it should be possible to calculate the pdf of
hr with the corresponding Fokker-Planck equation. Equa-
tion (9) can be integrated over h0 and is then valid also
for the unconditional pdf:

−r
∂

∂r
p(hr, r) =

{
− ∂

∂hr
D(1)(hr, r) +

∂2

∂h2
r

D(2)(hr, r)
}

p(hr, r). (23)

Now at the largest scale r0 where the drift and diffusion
coefficients could be worked out the empirical pdf is pa-
rameterized and used as the initial condition for a numer-
ical solution of equation (23). For several values of r the
reconstructed pdf is compared to the respective empirical
pdf, as shown below in this section. If our Fokker-Planck
equation successfully reproduces these single scale pdf, the
structure functions 〈hn

r 〉 can also easily be obtained.
A second verification is the reconstruction of the condi-

tional pdf by a numerical solution of Fokker-Planck equa-
tion (9) for the conditional pdf. Reconstructing the condi-
tional pdf this way is much more sensitive to deviations in
D(1) and D(2). This becomes evident by the fact that the
conditional pdf (and not the unconditional pdf of Figs. 21
and 23) determine D(1) and D(2) and thus the stochas-
tic process, see equations (7) and (8). The knowledge of
the conditional pdf also gives access to the complete n-
scale joint pdf (Eq. (4)). Here again the difference from
the multiscaling analysis becomes clear, which analyses
higher moments 〈hn

r 〉 =
∫

hn
r · p(hr) dhr of hr, and does

not depend on the conditional pdf. It is easy to show that
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Fig. 21. Numerical solution of the Fokker-Planck equa-
tion (23) compared to the empirical pdf (symbols) for road
surfaces with scaling properties. For each surface, the topmost
solid line corresponds to an empirical pdf parameterized at
the largest scale, and the dashed lines to the reconstructed
pdf. Scales are (from top to bottom) for Road 1: 316, 158, 79,
66mm, for Road 2: 158, 79, 47, 20 mm, for Road 3: 188, 95,
47, 24 mm. Pdf are shifted in the vertical direction for clarity
of presentation.

there are many different stochastic processes which lead
to the same single scale pdf p(hr).

For both verification procedures we use a technique
which is mentioned in [22] and has already been used
in [14,12]. An approximative solution of the Fokker-Planck
equation (9) for infinitesimally small steps ∆r over which
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D(k) can be taken as constant in r, is known [22]

p(h1, r − ∆r|h0, r) =
1

2
√

πD(2)(hr, r)∆r

× exp
(
− (h1 − h0 − D(1)(h0, r)∆r)2

4D(2)(hr, r)∆r

)
. (24)

A necessary condition for a Markov process is the valid-
ity of the Chapman-Kolmogorov equation (21) [22], which
allows to combine two conditional pdf with adjacent in-
tervals in r into one conditional pdf spanning the sum of
both intervals. By an iterative application of these two
relations we are able to obtain conditional probabilities
p(hi, r0 − i∆r|h0, r0) spanning large intervals in the scale
r, given that for all involved scales ri the drift and diffu-
sion coefficients are known.

In the following the results of this verification proce-
dure are shown for those surfaces where the drift and dif-
fusion coefficients of the Fokker-Planck equation could be
obtained.

7.3 Verification results

The results of the reconstruction of the unconditional pdf
for the road surfaces with scaling properties are presented
in Figure 21. The pdf of Road 1 show at smaller scales a
peak around 5 σ∞ which is not reproduced by our Fokker-
Planck equation because in this regime of hr D(1) and D(2)

could not be estimated with sufficient precision. Here it
has to be noted that according to equation (12) σ∞ > σr

for any r, and thus 5 σ∞ is a large value for a pdf, de-
noting quite rare events (the r-dependence of σr has been
presented by S2(r) = σ2

r , see Sect. 4). The magnitudes
of the estimated drift and diffusion coefficients had to be
adjusted by a factor of 0.65 to give optimal results in the
reconstruction. For Road 2 it is likely that the correspon-
dence between the empirical and reconstructed pdf could
be improved by a more advanced parameterization of the
nontrivial shape especially of the estimated drift coeffi-
cient (see Fig. 16). Here, the estimated drift and diffusion
coefficients could be used without adjustment. The recon-
structed pdf for Road 3 are in perfect agreement with the
empirical ones. A substantial adjustment factor of 0.20 for
D(1) and 0.26 for D(2) was necessary to achieve the best
result.

Reconstructed conditional pdf are shown in Figure 22
for the road surfaces. While there are deviations for larger
values of h0, h1, the overall agreement between the empir-
ical and reconstructed pdf is good. Especially the rather
complicated shape of the conditional pdf of Road 2 ap-
pears to be well modelled by our coefficients D(1), D(2).
As mentioned above, an improved parameterization of
D(1) may lead to even better results. The magnitudes
of D(1), D(2) were adjusted by the same factors as for
the unconditional pdf above.

In the case of the Au film the drift and diffusion coef-
ficients could be worked out from 281 down to 56 nm, see
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Fig. 22. Numerical solution of the Fokker-Planck equation (9)
compared to the empirical pdf for road surfaces with scaling
properties. Similar to Figure 12 in each case a contour plot of
empirical (solid lines) and reconstructed pdf (broken lines) is
shown on top, with contour levels as in Figure 12. Below two
cuts at h0 ≈ ±σ∞ are located. Here, empirical pdf are plotted
as symbols. Scales are r0 = 304 mm, r1 = 158 mm (Road 1),
r0 = 158 mm, r1 = 112 mm (Road 2), and r0 = 188 mm, r1 =
92mm (Road 3).
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Section 6. In contrast to this regime, the range of correla-
tion between scales is only about 40 nm, i.e., height incre-
ments on scales which are separated by at least 40 nm are
uncorrelated. Nevertheless, both verification procedures
outlined in Section 7 gave good results over the whole
range from 281 to 56 nm as shown in Figure 23. Here the
estimated D(1) and D(2)(hr, r) were multiplied by factors
1.3 and 2.2, respectively.

7.4 Discussion of the verification procedure

For the verification of the drift and diffusion coeffi-
cients estimated in Section 6 numerical solutions of the
Fokker-Planck equations (9) and (23) have been per-
formed using these estimations. The reconstructed pdf
have been compared to the empirical ones to validate the
description of the data sets as realizations of stochas-
tic processes obeying the corresponding Fokker-Planck
equation.

Good results were obtained for most surfaces where the
drift and diffusion coefficients could be derived. In the case
of Road 4 and Crack we found that the higher Kramers-
Moyal coefficients D(3) and D(4) were significantly differ-
ent from zero, and the empirical pdf could not be repro-
duced with a Fokker-Planck equation (which only uses
D(1) and D(2)).

It may be surprising that the correspondence between
the empirical and reconstructed pdf seems better for the
conditional rather than for the unconditional pdf in some
cases (compare Figs. 21 and 22). One reason may be that
in Figure 22 it is clear that the empirical pdf are not pre-
cisely defined for combinations of large h0 and h1. The eye
concentrates on the central regions of the contour plots
where the uncertainty of the empirical pdf is reduced, as
well as deviations due to possible inaccuracies and uncer-
tainties of our drift and diffusion coefficients. This effect
is also confirmed by our mathematical framework where
all steps in the procedure are based on the estimation and
evaluation of the conditional (not the unconditional) pdf.

The reconstruction procedure allows also to adjust the
estimated coefficients in order to improve the above-men-
tioned description, thus compensating for a number of un-
certainties in the estimation process. While the functional
form of D(1) and D(2) found in Section 6 for all surfaces
could be confirmed, in most cases the magnitudes of the
estimated values had to be adjusted to give satisfactory
results in this reconstruction procedure. We found this ef-
fect also when analysing turbulent velocities and financial
data. One reason may be the uncertainties of the esti-
mation procedure. A second source of deviations may be
that the dependence of M (k)(hr, r, ∆r) on ∆r is not always
purely linear in the extrapolation range (see Sect. 6). Thus
fitting a straight line and extrapolating against ∆r = 0
may lead to coefficients D(1) and D(2) which still have
the correct functional form in hr but incorrect magni-
tudes. As mentioned in Section 6, in our case no general
improvements could be achieved by the use of nonlinear
(i.e. polynomial) fitting functions or higher order terms
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Fig. 23. Numerical solutions of the Fokker-Planck equa-
tions (9) and (23) compared to the empirical pdf for the Au
surface. (a) Results of the integrated equation (23) presented
as in Figure 21. Scales r are 281, 246, 148, and 56 nm (from
top to bottom). (b), (c) Numerical solution of equation (9)
for the conditional pdf compared to the empirical pdf at scales
r0 = 183 nm, r1 = 155 nm (b) and r0 = 281 nm, r1 = 56 nm (c).
The organisation of the diagram is as in Figure 22.
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of the corresponding Taylor expansion. It is possible that
the range of ∆r < lM where no Markov properties are
given is in most cases large enough that approximations
for small ∆r are inaccurate. We would like to note that
there are also data sets which did not require any adjust-
ment of the estimated coefficients, see Road 2 and [12].
A last remark concerns the latest results in the case of
Road 1, see Figure 15. If the fraction of M (k)(∆r) which
is proportional to 1/∆r is substracted before performing
the extrapolation, the resulting D(k) are substantially im-
proved in their magnitudes. This may be a way to correct
the extrapolation of the D(k) in cases where uncorrelated
noise is involved.

In any case, whether an adjustment of D(1) and
D(2) was needed or not, for the presented surfaces a
Fokker-Planck equation was found which reproduces the
conditional pdf. Together with the verification of the
Markov property (4) thus a complete description of the
n-scale joint pdf is given, which was the aim of our work.

8 Conclusions

For the analysis and characterization of surface rough-
ness we have presented a new approach and applied it
to different examples of rough surfaces. The objective of
the method is the estimation of a Fokker-Planck equa-
tion (9) which describes the statistics of the height incre-
ment hr(x) in the scale variable r. A complete characteri-
zation of the corresponding stochastic process in the sense
of multiscale conditional probabilities is the result.

The application to different examples of surface mea-
surement data showed that this approach cannot serve as a
universal tool for any surface, as it is also the case for other
methods like those based on self- and multi-affinity. With
given conditions, namely the Markov property and a van-
ishing fourth order Kramers-Moyal coefficient (cf. Sect. 2),
a comprehensive characterization of a single surface is ob-
tained. The features of the scaling analysis are included,
and beyond that a deeper insight in the complexity of
roughness is achieved. As shown in [13] such knowledge
about a surface allows the numerical generation of surface
structures which should have the same complexity. This
may be of high interest for many research fields based on
numerical modelling.

The precise estimation of the magnitudes of the
drift and diffusion coefficients for surface measurement
data still remains an open problem. While for other
applications a number of approaches have been devel-
oped [14,32,36,37] in any case a verification of the esti-
mated Fokker-Planck equation is necessary and may lead
to significant adjustments, as it is the case for some of our
data sets.

We enjoyed helpful and stimulating discussions with R.
Friedrich, A. Kouzmitchev and M. Haase. Financial support
by the Volkswagen Foundation is kindly acknowledged.
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